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Abstract Methods commonly employed to  calculate absorption 
rate constants from the time course for drug in the blood are shown 
to yield “apparent” values, k, when the drug at the site of admin- 
istration is simultaneously lost to an extravascular compartment(s). 
The value for k obtained by either Wagner-Nelson calculations for 
a drug distributed according to a one-compartment model or Loo- 
Riegelman calculations for a drug described by a two-comparlment 
niodel is shown to be the sum of all individual rate constants for 
simultaneous first-order loss of drug from the absorption site. 
The parallel rate processes leading to this situation may be chemical 
or biological degradation of the drug at the absorption site, transfer 
to an extravascular compartment, or any other first-order process 
that decreases the concentration of drug in the depot as a function 
of time simultaneously with the absorption process. The true rate 
constant for absorption in such a case can be calculated by deter- 
mining the fraction of the dose actually absorbed, f, provided that 
all of the initial dose can be accounted for by the simultaneous rate 
processes. The absorption constant, k l ,  is then calculated from the 
equation kl = fk. 

Keyphrases 0 Absorption rate constants-ffect of parallel first- 
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The determination of absorption rate constants from 
blood level data is a common problem when biophar- 
maceutics and pharmacokinetics are applied to dosage 
form evaluation or design. Wagner and Nelson (1) 
developed a method for calculating the absorption rate 
constant for transfer from an extravascular depot into 
the body for a drug whose distribution can be described 
by a one-compartment model. For the case where ab- 
sorption is first order, this may be illustrated by Scheme 
I, where kl is the first-order constant for absorption from 
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the depot into the body, and /3 is the first-order rate 
constant representing the sum of elimination by all 
routes. Similarly, Loo and Riegelman (2) reported a 
method for calculating the absorption rate constant, kl,  
for the case where the drug is distributed according to a 
two-compartment model. This is illustrated in Scheme 11, 
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where klz and kS1 are the first-order rate constants for 
distribution between the central and peripheral com- 

partments, and kz is the first-order constant for total 
elimination from the central compartment. The values 
for these constants are calculated from data following a 
rapid intravenous injection, and the results are used in 
calculating the absorption constant, kl,  following an 
oral dose of the same drug. 

Both of the methods work well when appropriately 
applied to the proper cases, as defined in Schemes I and 
11. But a question arises as to the physical meaning of 
the calculated value for kl when a parallel first-order 
process takes place at the absorption site. This may be 
illustrated as shown in Scheme 111 for the one-com- 

k, ki  B 
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partment model and in Scheme IV for the two-com- 
kl ki 

A + E + C  

D T  
Scheme IV 

partment model. This report demonstrates that the ap- 
plication of Wagner-Nelson (1) calculations based on 
Scheme 111 or Loo-Riegelman (2) calculations applied to 
Scheme IV results in an “apparent” first-order rate 
constant which is the sum of the true absorption rate 
constant, kl, and the rate constant for parallel loss of 
drug from the depot, k3. 
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Figure 1-Typical analog computer simulation of the time course for  
fraction of drug in each comparfmenf in Scheme Ill, where A = 
absorption site, B = body, C = elimination, D = process competing 
with absorption, k,  = 0.4, (3 = 0.2, and k, = 0.3 (hr.-l). 
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An example of this potential problem would be simul- 
taneous first-order hydrolysis and absorption of a drug 
in solution in the stomach, intestines, or muscle when 
the sum of hydrolysis and absorption represents all of 
the original drug in solution as illustrated in Schemes 
I11 and IV. The loss of drug to additional compartments 
by non-first-order rate processes (such as excretion of 
undissolved drug) is not included in these schemes and 
is, therefore, not described by the following kinetic 
expressions. The simplest case (simultaneous first-order 
rate processes competing for drug at the depot) is pre- 
sented here to illustrate that the calculated value for the 
absorption rate constant can be influenced by loss of 
drug to nonabsorption processes. Such processes may 
be chemical degradation, biotransformation by enzymes 
or intestinal bacteria, or transfer to a compartment 
other than the blood. If both absorption and parallel 
loss are first order and these represent the only processes 
for loss of A from the depot, then the "apparent" first- 
order absorption rate constant may be corrected to ob- 
tain the true value for k l ,  as shown in the Discussion 
section. 

EXPERIMENTAL 

Parallel Loss from Depot in One-Compartment Model-Scheme 
111 represents the simultaneous transfer of drug from the depot, A, 
into the body, B,  and into the compartment for competing drug 
loss, D ,  for a drug obeying a one-compartment model. Compartment 
C represents the sum of all elimination routes from the body. This 
compartmental scheme was programmed on an analog computer', 
and the rate constants were assigned values. Curves similar to those 
illustrated in Fig. 1 were generated for each set of rate constants 
chosen, and simulated blood level data were analyzed using the 
Wagner-Nelson (1) equation. 

Parallel Loss from Depot in Two-Compartment Model-Scheme 
IV represents the simultaneous transfer of a two-compartment 
model drug from the depot, A ,  into thecentral compartment, B, and 
also into compartment D which represents an alternate route of 
drug loss from the depot. The peripheral compartment (tissues) is 
represented by T,  and total drug loss by all routes is represented by 
C. This compartmental scheme was programmed on an analog 
computer', and the output was analyzed by a digital computer using 
a program based on the steps outlined for the Loo-Riegelman (2) 
method as described by Notari (3). The data generated by the 
analog computer for each set of rate constants chosen were similar 
to those illustrated in Fig. 2. 

RESULTS 

Parallel Loss from Depot in One-Compartment Model-Curves 
generated by the anlog computer for the fraction of dose in the 
plasma as a function of time in a one-compartment model (Scheme 
111) were analyzed using the Wagner-Nelson (1) equation: 

(A/Vd)r,  = Pin + fllot" P d f  (Eq. 1) 

where (A/V& represents the total amount absorbed, A, at time 
t,, expressed in units of concentration in terms of the volume of 
distribution, Vd; P is the plasma concentration; and p is the rate 
constant for elimination from the bodyz. An introduction to the 
mechanics for applying this equation is given in Reference 3. 

Typical results are illustrated in Table I, which represents the 
data shown in Fig. 1. A plot of In [loo% - ( A / V ) ]  uersus t for 
the case described in Scheme I would have a slope of - k , .  However, 

~ ~~ 

1 EAI model TR 20. 
2 For a discussion of the differences between the constants kz and @ 

and the one- and two-compartment models, see Section 111, B and C, in 
Chapter 3 of Referertce 3.  

Table I-Application of Wagner-Nelson Calculationsa to: 
ks ki 0 

D + A + B + C  
where kl = 0.4, /3 = 0.2, and k 3  = 0.3 (hr.-'y 

P f n  

0 . 5  1.10 0.055 1.16 29.7 70.3 
1.0 1.78 0.199 1.98 50.8 49.2 
1 . 5  2.17 0.396 2.57 65.9 34.1 
2.0 2.35 0.622 2.97 76.1 23.9 
3.0 2.37 1.095 3.46 88 .8  11.2 
A O  2 1 s  1 .55  3.70 94.8 5 .2  _. ._ . _ _  
5 . 0  1.85 1.95 3.80 97.5 2.5 
7 . 0  1.30 2.58 3 . 8 8  99.5 0 . 5  
9 .0  0 .88  3.01 3.89 100 0 

See Eq. 1. See Fig. 1. 

the k from the plot for the data illustrated in Table I is 0.7, which 
is seen to  be the sum of kl and k 3  or, in this case, 0.4 plus 0.3. Thus, 
the application of Wagner-Nelson calculations to  blood level data 
in a system described by Scheme I11 will yield an apparent constant, 
k ,  which is the sum of the constants for the parallel rate processes. 

Parallel Loss from Depot in Two-Compartment Model- 
Analog computer curves representing the central compartment in 
Scheme IV were analyzed by digital computer using the Loo- 
Riegelman (2) equations: 

(A/Vp)in = Pln + kz P dt + T t n  (Eq. 2) loL" 
where ( A / V P ) ~ .  represents the total amount absorbed, A,  at time 
f,,, expressed in terms of the plasma volume, Vp; P represents the 
drug concentration in the plasma; and the tissue concentration, T ,  is 
defined: 

Tt, =  TI^-^ e-h21At + (k12/k21)Pln-1 (1 - e-kZ1At) + kiz APAt/2 (Eq. 3) 

A typical example is shown in Fig. 2, where k l  = 0.6, kz = 0.2' 
k12 = 0.4, kpl = 0.2, and kB = 0.3 (in hr.-I); Table I1 lists the values 
obtained when Eq. 2 was applied to  the blood level data. In this 
particular example, a first-order plot of the data found in the last 
column results in a calculated apparent first-order rate constant of 
0.9 (hr.-l), which is the sum of the true absorption constant, k ,  = 
0.6, and the rate constant for alternate drug loss from the depot, 
ka = 0.3. This example illustrates the fact that the application of Eq. 
2 to a drug whose kinetics are described by Scheme IV results in an 
apparent rate constant, k, which is the sum of kl and k3. 

DISCUSSION 

The simultaneous first-order loss of drug from the site of adminis- 
tration in either Scheme I11 or IV may be represented by: 

ka k l  
D + A + B  

Scheme V 

where A is the depot, B is the plasma, and D is the competing first- 
order rate process for loss of drug from the depot. It can easily be 
shown (3) that: 

A l  = ae--kt (Eq. 4) 
where At is the amount of drug in compartment A at time t ;  a is the 
dose of drug at  time zero; and k ,  the apparent first-order rate con- 
stant for loss from the depot, may be defined as: 

k = k ,  + k3 (Eq. 5 )  

Furthermore, a first-order plot of data for any one of the compart- 
ments, A, 8, or D ,  will also yield the same rate constant, k, or, in 
other words, the sum of the two individual rate constants, k ,  plus kl.  
The individual rate constants can easily be determined from the 
relationships : 

kB,/a = ki (Eq. 6 )  
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Table 11-Application of Loo-Riegelman Calculations" to: 
ki kz 

A + B + C  

D T  
where kl  = 0.6, kz = 0.2, k ,  = 0.3, k1t = 0.4, and k2, = 0.2(hr.-lP 

0.25 1.60 0.040 0.080 1.72 18.6 81.4 
0.50 2.83 0.151 0.294 3.27 35.4 64.6 
0.75 3.57 0.311 0.592 4.47 48.3 51.7 
1.00 4 .00  0.500 0.933 5.43 58.8 41.2 
1.50 4.20 0.910 1.626 6.74 72.9 27.1 
2.00 4.08 1.324 2.258 7.66 82.8 17.2 
3 . 0 0  3 . 3 0  2.062 3.172 8.53 92.3 7 . 7  
4 0 0  2 6 0  2 6 5 2  3 6 5 4  8 9 1  9 6 4  3 6  
5 00 2 10 3 122 3 834 9 06 98 0 2 0 
6 0 0  1 7 9  3 5 1 1  3838  9 1 4  9 8 8  1 2  
7 00 1 59 3 849 3 751 9 19 99 5 0 7 
8.00 1 .44  4.152 3.618 9.21 99.7 0 . 3  
9.00 1 . 3 5  4.431 3.466 9.25 100 0 .0  

a See Eq. 2. b See Fig. 2. 

k D J a  = k ,  (Eq. 7) 

BID = ki/k3 (Eq. 8) 

or: 

which also were derived elsewhere (3). 
In Scheme V,  the true first-order rate constant for absorption, k , ,  

may be calculated from any one of the relationships shown in Eqs. 
6-8. Thus, the apparent first-order rate constant for absorption from 
an extravascular site into the central compartment can be corrected 
for parallel loss by taking into account the total amount of drug 
absorbed from the site. The percent absorbed can be determined by 
comparing the area under the plasma level uersus time curve follow- 
ing extravascular administration to the area following intravenous 
administration. The percent absorbed also can be calculated from 
the data obtained in the Wagner-Nelson calculations by multiply- 
ing the maximum value for ( A / V d )  by the value for Vd (Table I). 
In the case of a two-compartment model, the Loo-Riegelman cal- 
culations may be used by multiplying the maximum value for ( A /  
Vp) by the value for Vp (Table 11). It should he emphasized that the 
percent values given in the last columns of Tables I and I1 are 
not the percent of the dose unabsorbed. They are, instead, the per- 
cent of absorbable drug remaining as a function of time since these 
numbers are calculated by assigning the total amount of drug ab- 
sorbed (expressed in concentration terms) a value of 100%. When 
Scheme V represents the loss of drug from the depot and the 
total amount of absorbed drug is determined, the true rate constant 
for absorption, k , ,  can be calculated by modifying Eq. 6 to give: 

k1 = f k  (Eq. 9) 

wherefis the fraction of the dose absorbed, and k is the apparent 
rate constant obtained by the Wagner-Nelson or Loo-Riegelman 
calculations. 

Although Scheme V represents two competing processes, Eq. 9 is 
also applicable to any case where drug is lost from the depot by 
more than two simultaneous first-order processes. If drug is lost 
from the depot by t i  different first-order rate processes, the "ap- 
parent" first-order constant, k ,  calculated from data representing 
any one of the compartments in this system is defined as: 

n 
k =  x k ,  

i =  1 

where ti is the total number of competing rate processes, and k ,  is the 
rate constant for the loss of drug from A to X,. In the case of ab- 
sorption of a drug with either a one- or two-compartment open 
model, one of the parallel processes, A',, will represent transfer from 
the depot to the blood and the rate constant for that process may 
be called the absorption rate constant. The apparent rate constant 

calculated either by the Wagner-Nelson (1) or Loo-Riegelman (2) 
method is thus defined by Eq. 10. It is quite obvious that no problem 
exists when the constant k is calculated for the case i = I ,  since k 
would then be equal to k, as illustrated in Schemes I and 11. How- 
ever, the calculated value for k can be quite misleading when i > l ,  
and the first-order rate constants for the competing first-order pro- 
cesses are, therefore, included in the calculated value for the ab- 
sorption rateconstant. 

The significance of this potential problem is readily apparent. 
False impressions of rapid absorption could result from rapidly 
hydrolyzable analogs or dosage forms. The compound with the 
fastest apparent absorption rate constant in a series may be the 
most susceptible to biotransformation. The total amount of drug 
absorbed from the depot should be determined for an accurate in- 
terpretation of the calculated rate constants for absorption. If a drug 
is well absorbed from the depot, the calculated absorption rate con- 
stant may be considered to be a good estimate. If, however, the drug 
is poorly absorbed, the reason for the incomplete absorption must 
be determined before one can assign a physical meaning to the cal- 
culated value of the apparent absorption rate constant. In the case 
where two or more simultaneous first-order rate processes are in- 
volved, Eq. 9 can be used to calculate the value for k , .  The difference 
between the observed k and the value for k ,  would then represent 
the sum of the first-order rate constants for all other routes. As an 
example of the potential significance, suppose an investigator were 
to find that a drug derivative had a calculated absorption rate con- 
stant twice that of the original drug but that only 50% of the dose 
of the new analog was absorbed due to first-order hydrolysis in the 
depot whereas the original drug was completely absorbed. This 
would mean that the true absorption constant, k l ,  was not affected 
at  all by the chemical modification but that the drug was simply 
destroyed more rapidly a t  the absorption site. 

This problem is not unique to oral dosage forms. Doluisio et ul. 
(4) showed that intramuscular injections of sodium dicloxacillin 
and sodium ampicillin solutions were only 75-78x absorbed. They 
suggested that the drug may have undergone chemical or enzymatic 
decomposition at the injection site. I f  22-25% of the drug placed 
into the muscle is indeed undergoing some simultaneous first-order 
rate process, the apparent absorption rate constants can be par- 
titioned into two components. For example, the absorption rate 
constant for an ampicillin solution given intramuscularly was cal- 
culated to be 0.89 (hr.-1) using the Loo-Riegelman method (4). 
Since the fraction absorbed was found to be 0.77, one can calculate 
kl from Eq. 9 as: 

kl  = (0.77)(0.89) = 0.69 (hr.-') (Eq. 11) 

and the difference, or 0.89 - 0.69 = 0.20 (hr.-I), is, therefore, the 
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Figure 2-Typicnl anulog computer simulation of the time course for  
fractioii of drug in each compartmerit in Scheme I V ,  where A = 

absorption site, B = central compartment, C = elimination. D = 
process competing with absorption, T = peripheral compartment, ki = 
0.6,k2 = 0.2,k3 = 0.3,klz = 0.4,undknl = 0.2(/1r.-I) .  
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sum of the rate constants for parallel first-order loss from the depot, 
a loss which amounts to 23 of the dose. 

It would thus appear that the fraction of dose absorbed should be 
routinely calculated in studies employing the Wagner-Nelson (1) or 
Loo-Riegelman (2) method to determine whether or not additional 
data might be needed to assign a physical meaning to the calculated 
value for the absorption rate constant. 
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Effects of Protein Binding of Drugs on 
Areas under Plasma Concentration-Time Curves 

JOHN J. COFFEY 

Abstract 0 By using a conservation-of-mass treatment, it can be 
shown that the area under a free drug concentration-time curve is 
determined by the rate constant of elimination of free drug, regard- 
less of the extent of protein binding. In the absence of information 
on the free drug elimination constant, the area under the free drug 
curve can be calculated from the limiting value of the apparent 
total drug elimination constant and the binding parameters. The 
effect of competitive binding inhibitors depends strongly on the 
pharmacokinetics of the inhibitor; and, if the inhibitor is eliminated 
much more rapidly than drug, it is without effect on the area under 
the free drug curve. 

Keyphrases 0 Protein binding-ffects on area under plasma 
concentration-time curve, conservation-of-mass treatment, equa- 
tions 0 Plasma concentration-time curves-effects of protein 
binding of drugs on area under curve, pharmacokinetics of inhib- 
itor, equations 

In the course of recent investigations into the quanti- 
tative aspects of nonlinear plasma protein binding ef- 
fects on pharmacokinetics ( l ) ,  some interesting rela- 
tionships between binding parameters and the areas 
under plasma concentration-time curves emerged. 
First, if the elimination rate constant for free drug is 
known, the standard relationship yields the area under 
the free drug concentration curve, , regardless of the 
extent of the binding. Second, the effect of competitive 
inhibition of binding on the area under a concentra- 
tion-time curve depends strongly on the pharmaco- 
kinetics of the inhibitor and, in some cases, inhibition of 
binding may have no effect on this parameter. 

THEORETICAL 

The notations are identical to those used in a previous paper (1): 
C J  = concentration of free drug; cb = concentration of bound 
drug; Cf = total concentration of drug, i.e., cb + CJ; P = concen- 
tration of protein-drug binding sites; and Kd = dissociation con- 
stant ofthe drug-protein complex. 

If V ,  is the volume of the plasma compartment, then, regardless 
of the number of compartments in the system, the amount of drug 

eliminated from the plasma in the time interval, dt, is given by: 

dAout = J‘lkctppCt dt (Eq. 1) 

where kapp is an apparent constant of elimination. In systems that 
include binding of drugs to plasma proteins, kPp is not constant but 
is a function of time. 

The total amount of drug eliminated is then: 

Aout = Vl ~ m k . p p C f  dt (Eq. 2) 

By applying the conservation-of-mass treatment of Wagner (2) and 
letting D equal the total amount of drug absorbed or injected: 

{ = l m k a P p C t d t  

However, k,,, is simply the elimination rate constant for free drug 
multiplied by the fraction of drug that is free: 

0%. 4) Cr kapp = kz - Cf 

where kz is the free drug elimination rate constant. Substituting in 
Eq. 3: 

Thus, if the elimination rate constant for free drug is used, the 
standard expression (2) for the area under the concentration-time 
curve always relates to  free drug, regardless of the amount of drug 
bound. 

However, it is not always necessary to know kz. If the concentra- 
tion-time curve is extended to  sufficiently low concentrations, the 
right-hand side of the binding relationship : 

PCf cb = Kdfcf 
reduces approximately to PC,/Kd, and C , / C ,  becomes constant : 

The value of k,,, then becomes constant at sufficiently long times; 
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